Fundamental Theorem of Calculus
Fundamental Theorem of Calculus Exercise 1 : Derivatives of Integral Functions Find $F’(x)$ for each function: $F(x) = \int_a^{x^3} \sin^3 t dt$ $F(x) = \int_3^x \frac{1}{1 + \sin^6 t + t^2} \int_1^t \sin^3 u du dt$ $F(x) = \int_{15}^x \int_8^y \frac{1}{1 + t^2 + \sin^2 t} dt dy$ $F(x) = \int_x^b \frac{1}{1 + t^2 + \sin^2 t} dt$ $F(x) = \int_a^b \frac{x}{1 + t^2 + \sin^2 t} dt$ $F(x) = \sin \left( \int_0^x \sin \left( \int_0^y \sin^3 t dt \right) dy \right)$ ...