Subspaces
Subspaces Exercise 1 For each of the following subsets of $\mathbb{F}^3$, determine whether it is a subspace of $\mathbb{F}^3$: ${(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 0}$ ${(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 4}$ ${(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 x_2 x_3 = 0}$ ${(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 = 5x_3}$ Exercise 2 Show that the set of differentiable real-valued functions $f$ on the interval $(-4, 4)$ such that $f’( -1) = 3f(2)$ is a subspace of $\mathbb{R}^{(-4, 4)}$. ...