Vectors and Matrices in Python Solutions

Vectors and Matrices in Python Solutions Exercise 1 : Vectors in $\mathbb{R}^7$ Consider the following vectors: $$ u = (0.5, 0.4, 0.4, 0.5, 0.1, 0.4, 0.1), \quad v = (-1, -2, 1, -2, 3, 1, -5) $$Using Python and NumPy: Check whether $u$ and $v$ are unit vectors. Compute the dot product of $u$ and $v$. Determine if $u$ and $v$ are orthogonal. import numpy as np u = np.array([0.5, 0.4, 0.4, 0.5, 0.1, 0.4, 0.1]) v = np.array([-1, -2, 1, -2, 3, 1, -5]) # 1. Check if u and v are unit vectors norm_u = np.linalg.norm(u) norm_v = np.linalg.norm(v) print(norm_u, norm_v) # 2. Dot product dot_uv = np.dot(u, v) print(dot_uv) # 3. Orthogonality print(np.isclose(dot_uv, 0)) Exercise 2 : Norms and Orthogonality Consider the following vectors in $\mathbb{R}^9$: ...

November 9, 2025 · 1298 wierder

Vectors and Matrices in Python

Vectors and Matrices in Python In this worksheet, you will use Python (NumPy) to perform vector and matrix operations. For each exercise, write Python code to compute the required results and verify them numerically. Exercise 1 : Vectors in $\mathbb{R}^7$ Consider the following vectors: $$ u = (0.5, 0.4, 0.4, 0.5, 0.1, 0.4, 0.1), \quad v = (-1, -2, 1, -2, 3, 1, -5) $$Using Python and NumPy: Check whether $u$ and $v$ are unit vectors. Compute the dot product of $u$ and $v$. Determine if $u$ and $v$ are orthogonal. Exercise 2 : Norms and Orthogonality Consider the following vectors in $\mathbb{R}^9$: ...

November 9, 2025 · 732 wierder

Vectors and Matrices

Vectors and Matrices Exercise 1 Consider the following vectors in $ \mathbb{R}^7 $: $$ u = (0.5, 0.4, 0.4, 0.5, 0.1, 0.4, 0.1), \quad v = (-1, -2, 1, -2, 3, 1, -5) $$ Check if $ u $ and $ v $ are unit vectors. Calculate the dot product of the vectors $ u $ and $ v $. Are $ u $ and $ v $ orthogonal? Exercise 2 Consider the following vectors in $ \mathbb{R}^9 $: ...

November 6, 2025 · 742 wierder

Mathematics for Machine Learning

Mathematics for Machine Learning Exercise 1 : Basic vector operations Let $$ \mathbf{u} = (1,2,-1)^\top, \quad \mathbf{v} = (0,1,3)^\top. $$ Compute: ⟨u, v⟩ \( \| \mathbf{u} \|_2 \) and \( \| \mathbf{v} \|_2 \) Projection of u onto v. Exercise 2 : Linear system Solve: $$ A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & -1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}, \quad A\mathbf{x} = \mathbf{b}. $$Exercise 3 : Data interpretation Given points (1,2), (2,3), (3,5), form the design matrix X for ...

Oktober 30, 2025 · 409 wierder

Luxformel Styleguide

Luxformel Styleguide Luxformel ass ee Site ze fannen ënnert dem link https://luxformel.info. De Site gouf erstallt fir d’Léieren ze vereinfachen mat Exercicer, gekierzte Coursen, an nëtzlechen Dokumenter. Inhaltsverzeechnes Allgemenge Stil Faarwen Schréft Kapitel Kapitel Titel Ëenner Titelen Zousaz Titelen Bemierkungen Text Ënnersträichen Lëschten Onnumerotéiert Lëschten Numerotéiert Lëschten Tabellen Archiv Bibliothéik Change Log Allgemenge Stil Faarwen Luformel am Helle Stil huet follgend Faarwen: Wäiss als Hannergrond: #fff Schwaarz fir Text, Titelen, Formelen, etc. :#000 Mof als spezial Faarw: hsl(250 100% 50% / 0.6) Linken sinn ausser bei ausname blo: #0000ff Schréft Déi typesch Schréft fir d’Interface op Luxformel ass: ...

September 28, 2025 · 571 wierder

Polynomial Division Theorem

Polynomial Division Theorem Exercise 1 : Polynomial Long Division Divide using polynomial long division. $(x^2 + 5x + 6) \div (x + 2)$ $(2x^2 - 7x + 3) \div (x - 3)$ $(x^3 - 8) \div (x - 2)$ $(3x^3 - 2x^2 + 4x - 1) \div (x^2 - x + 1)$ $(x^4 - 16) \div (x^2 + 4)$ $(2x^4 - 3x^3 + x^2 - 5x + 2) \div (x^2 - 2x + 1)$ ...

September 28, 2025 · 655 wierder

Null Spaces and Ranges

Null Spaces and Ranges Exercise 1 Give an example of a linear map \( T \) such that \(\dim \text{null} \, T = 3\) and \(\dim \text{range} \, T = 2\). Exercise 2 Suppose \( V \) is a vector space and \( S, T \in \mathcal{L}(V, V) \) are such that \[\text{range} \, S \subset \text{null} \, T.\] Prove that \((ST)^2 = 0\). Exercise 3 Suppose \( v_1, \ldots, v_m \) is a list of vectors in \( V \). Define \( T \in \mathcal{L}(\mathbb{F}^m, V) \) by ...

September 9, 2025 · 1274 wierder

Vector Space of Linear Maps

Vector Space of Linear Maps Exercise 1 Suppose \( b, c \in \mathbb{R} \). Define \( T: \mathbb{R}^3 \to \mathbb{R}^2 \) by \[T(x, y, z) = (2x - 4y + 3z + b, 6x + cxyz).\] Show that \( T \) is linear if and only if \( b = c = 0 \). Exercise 2 Suppose \( b, c \in \mathbb{R} \). Define \( T: \mathcal{P}(\mathbb{R}) \to \mathbb{R}^2 \) by ...

September 9, 2025 · 476 wierder

Dimension

Dimension Exercise 1 Suppose \( V \) is finite-dimensional and \( U \) is a subspace of \( V \) such that \[\dim U = \dim V \] Prove that \( U = V \) Exercise 2 Show that the subspaces of \( \mathbb{R}^2 \) are precisely \(\{0\}, \mathbb{R}^2\), and all lines in \( \mathbb{R}^2 \) through the origin. Exercise 3 Show that the subspaces of \( \mathbb{R}^3 \) are precisely \(\{0\}, \mathbb{R}^3\), all lines in \( \mathbb{R}^3 \) through the origin, and all planes in \( \mathbb{R}^3 \) through the origin. ...

September 9, 2025 · 685 wierder

Bases

Bases Exercise 1 Find all vector spaces that have exactly one basis. Exercise 2 Verify all the assertions: The list \((1,0,\ldots,0), (0,1,0,\ldots,0), \ldots, (0,\ldots,0,1)\) is a basis of \(\mathbb{F}^n\), called the standard basis of \(\mathbb{F}^n\). The list \((1,2), (3,5)\) is a basis of \(\mathbb{F}^2\). The list \((1,2,-4), (7,-5,6)\) is linearly independent in \(\mathbb{F}^3\) but is not a basis of \(\mathbb{F}^3\) because it does not span \(\mathbb{F}^3\). The list \((1,2), (3,5), (4,13)\) spans \(\mathbb{F}^2\) but is not a basis of \(\mathbb{F}^2\) because it is not linearly independent. ...

September 9, 2025 · 477 wierder