Integrals
Exercise 1 : Proofs
- Prove $\int_{0}^{b} x^{3} dx = \frac{b^4}{4}$ using equal partitions and $\sum_{i=1}^{n} i^3$.
- Prove $\int_{0}^{b} x^{4} dx = \frac{b^5}{5}$ analogously.
- Show $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^p}{n^{p+1}} = \frac{1}{p+1}$.
- Prove $\int_{0}^{b} x^p dx = \frac{b^{p+1}}{p+1}$.
Exercise 2
For $0 < a < b$, find $\int_{a}^{b} x^p dx$ using partitions with fixed ratios $r = t_i/t_{i-1}$:
- Show $t_i = a \cdot c^{i/n}$ where $c = b/a$.
- For $f(x) = x^p$, derive:
$$ U(f,P) = (b^{p+1} - a^{p+1}) \frac{c^{p/n}}{1 + c^{1/n} + \cdots + c^{p/n}} $$
and find $L(f,P)$. - Conclude $\int_{a}^{b} x^p dx = \frac{b^{p+1} - a^{p+1}}{p+1}$.
Exercise 3
Evaluate by symmetry:
- $\int_{-1}^{1} x^3 \sqrt{1-x^2} dx$
- $\int_{-1}^{1} (x^5 + 3)\sqrt{1-x^2} dx$
Exercise 4
Prove $\int_{0}^{x} \frac{\sin t}{t+1} dt > 0$ for all $x > 0$.
Exercise 5
Determine integrability on $[0,2]$ and compute when possible:
- $f(x) = \begin{cases} x & x \in [0,1) \ x-2 & x \in [1,2] \end{cases}$
- $f(x) = \begin{cases} x & x \in [0,1] \ x-2 & x \in (1,2] \end{cases}$
- $f(x) = x + \lfloor x \rfloor$
- $f(x) = \begin{cases} x + \lfloor x \rfloor & x \in \mathbb{Q} \ 0 & x \notin \mathbb{Q} \end{cases}$
- $f(x) = \begin{cases} 1 & x = a + b\sqrt{2}, , a,b \in \mathbb{Q} \ 0 & \text{else} \end{cases}$
- $f(x) = \begin{cases} 1/\lfloor 1/x \rfloor & x \in (0,1] \ 0 & x = 0 \text{ or } x > 1 \end{cases}$
- $f$ as in Figure 15.
Exercise 6 : Area Calulations
Find areas bounded by:
- $f(x) = x^2$ and $g(x) = x^2/2 + 2$
- $f(x) = x^2$, $g(x) = -x^2$, and $x = \pm 1$
- $f(x) = x^2$ and $g(x) = 1 - x^2$
- $f(x) = x^2$, $g(x) = 1 - x^2$, and $h(x) = 2$
- $f(x) = x^2$, $g(x) = x^2 - 2x + 4$, and $y$-axis
- $f(x) = \sqrt{x}$, $y = 0$, and $x = 2$
Exercise 7
Find $\int_{a}^{b} \left( \int_{c}^{d} f(x)g(y) dy \right) dx$ in terms of $\int f$ and $\int g$.
Exercise 8
Prove $m_i’ + m_i’’ \leq m_i$ using Theorem 5 notation.
Exercise 9
Characterize functions where:
- All lower = upper sums
- Some lower = some upper sum
- All lower sums equal (continuous case)
- All lower sums equal (integrable case)
Exercise 10
If $f$ is integrable on $[a,d]$, show it’s integrable on $[b,c]$ for $a < b < c < d$.
Exercise 11
- Prove $\int_a^b f \geq 0$ if $f \geq 0$.
- Prove $\int_a^b f \geq \int_a^b g$ if $f \geq g$.
Exercise 12
Prove $\int_a^b f(x) dx = \int_{a+c}^{b+c} f(x-c) dx$ via partition correspondence.
Exercise 13
For $a,b > 1$, show $\int_1^a \frac{1}{t} dt + \int_1^b \frac{1}{t} dt = \int_1^{ab} \frac{1}{t} dt$.
Exercise 14
Prove $\int_{ca}^{cb} f(t) dt = c \int_a^b f(ct) dt$.
Exercise 15
Show the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ has area $\pi a b$.
Exercise 16 : Cavalieri’s method
Cavalieri’s method for $\int x^n dx$:
- Show $\int_0^a x^n dx = c_n a^{n+1}$ where $c_n = \int_0^1 x^n dx$.
- Prove $2^{n+1} c_n = 2 \sum_{k \text{ even}} \binom{n}{k} c_k$.
- Conclude $c_n = 1/(n+1)$.
Exercise 17
If $f$ is bounded on $[a,b]$ and continuous except at $x_0 \in (a,b)$, show $f$ is integrable.
Exercise 18
For nondecreasing $f$:
- Find $L(f,P)$ and $U(f,P)$.
- Show $U(f,P) - L(f,P) = \delta (f(b) - f(a))$ for equal-width partitions.
- Prove $f$ is integrable.
- Give a nondecreasing function on $[0,1]$ with infinite discontinuities.
Exercise 19
For increasing $f$:
- Show $L(f^{-1},P) + U(f,P’) = b f^{-1}(b) - a f^{-1}(a)$.
- Prove $\int_a^b f^{-1} = b f^{-1}(b) - a f^{-1}(a) - \int_{f^{-1}(a)}^{f^{-1}(b)} f$.
- Find $\int_a^b \sqrt{x} dx$ ($0 \leq a < b$).
Exercise 20 : Young’s inequality
For continuous increasing $f$ with $f(0)=0$, prove Young’s inequality:
with equality iff $b = f(a)$.
Exercise 21
- Show $\int_a^b f = (b-a)\mu$ for some $\mu \in [m,M]$.
- If $f$ is continuous, $\int_a^b f = (b-a)f(\xi)$ for some $\xi \in [a,b]$.
- Give a counterexample without continuity.
- Mean Value Theorem: For continuous $f$ and nonnegative integrable $g$,
$$ \int_a^b fg = f(\xi) \int_a^b g \text{ for some } \xi $$ - Extend to nonpositive $g$.
- Show $g$ must have constant sign.
Exercise 22
For polar curve $r = f(\theta)$, show the area between $\theta_0$ and $\theta_1$ is:
Exercise 23
Let $ f $ be continuous on $[a, b]$. For any partition $ P = {t_0, \ldots, t_n} $ of $[a, b]$, define the polygonal length:
$$ \ell(f, P) = \sum_{i=1}^n \sqrt{(t_i - t_{i-1})^2 + [f(t_i) - f(t_{i-1})]^2} $$The length of $f$ on $[a,b]$ is $\sup{\ell(f,P)}$ (if bounded).
- Show that for linear $f$, $\ell(f)$ equals the distance between $(a,f(a))$ and $(b,f(b))$.
- For nonlinear $f$, find a partition $P = {a,t,b}$ where $\ell(f,P)$ exceeds this distance. (Use Problem 4-9.)
- Conclude that linear functions minimize length among all $f$ with fixed endpoints.
- If $f’$ is bounded, prove for any partition $P$: $$ L(\sqrt{1+(f')^2}, P) \leq \ell(f,P) \leq U(\sqrt{1+(f')^2}, P) $$ (Hint: Mean Value Theorem)
- Why is $\sup{L(\sqrt{1+(f’)^2}, P)} \leq \sup{\ell(f,P)}$? (Straightforward)
- Show $\sup{\ell(f,P)} \leq \inf{U(\sqrt{1+(f’)^2}, P)}$, proving that when $\sqrt{1+(f’)^2}$ is integrable: $$ \ell(f) = \int_a^b \sqrt{1+(f')^2} \, dx $$ (Hint: Compare $P’$ and $P’’$ via common refinement)
- Let $\mathcal{L}(x)$ be the graph length on $[a,x]$ and $d(x)$ the endpoint distance. If $\sqrt{1+(f’)^2}$ is integrable and $f’$ continuous at $a$, prove: $$ \lim_{x \to a^+} \frac{\mathcal{L}(x)}{d(x)} = 1 $$ (Hint: Multiple MVT applications)
- For the function in Figure 21, show the conclusion from (7) fails.
Exercise 24
A step function $s$ on $[a,b]$ is constant on each $(t_{i-1}, t_i)$ for some partition $P$.
- Prove that for integrable $f$ and $\epsilon > 0$, there exist step functions $s_1 \leq f \leq s_2$ with: $$ \int_a^b (s_2 - s_1) < \epsilon $$
- Show $f$ is integrable if such $s_1, s_2$ exist for all $\epsilon > 0$.
- Find a non-step $f$ with $\int_a^b f = L(f, P)$ for some $P$.
Exercise 25
For integrable $f$ on $[a,b]$ and $\epsilon > 0$, find continuous $g \leq f \leq h$ with:
$$ \int_a^b (h - g) < \epsilon $$(Hint: Approximate $f$ via step functions first)
Exercise 26
- Prove the sum of step functions is a step function.
- Show directly that $\int_a^b (s_1 + s_2) = \int_a^b s_1 + \int_a^b s_2$.
- Use (2) and Problem 26 to reprove Theorem 5 (linearity of integrals).
Exercise 27
For integrable $f$ on $[a,b]$, find $x \in [a,b]$ where:
$$ \int_a^x f = \int_x^b f $$(Show $x$ may not be in $(a,b)$.)
Exercise 28
Prove integrable functions have many continuity points:
- Given $U(f,P) - L(f,P) < b - a$, show $M_i - m_i < 1$ for some $i$.
- Construct nested intervals $[a_n,b_n]$ with $\sup f - \inf f < 1/n$ on $[a_n,b_n]$.
- Apply the Nested Interval Theorem to find infinitely many continuity points.
Exercise 29
- Find $f \geq 0$ with $f(x) > 0$ somewhere but $\int_a^b f = 0$.
- If $f \geq 0$ and continuous at $x_0$ with $f(x_0) > 0$, prove $\int_a^b f > 0$.
- For integrable $f > 0$ on $[a,b]$, show $\int_a^b f > 0$. (Use Problem 30.)
Exercise 30
- Let $f$ be continuous on $[a,b]$. If $\int_a^b fg = 0$ for all continuous $g$, prove $f = 0$.
- If $\int_a^b fg = 0$ for all continuous $g$ with $g(a) = g(b) = 0$, show $f = 0$.
(Hint: Assume $f(x_0) \neq 0$ and construct bump $g$.)
Exercise 31
Let $f(x) = x$ (rational) and $f(x) = 0$ (irrational).
- Compute $L(f,P)$ for all partitions $P$ of $[0,1]$.
- Find $\inf{U(f,P)}$.
Exercise 32
For $f(x) = 0$ (irrational) and $f(x) = 1/q$ ($x = p/q$ lowest terms). Prove $f$ is integrable on $[0,1]$ with $\int_0^1 f = 0$.
Exercise 33
Find integrable $f, g$ such that $g \circ f$ is not integrable. (Relate to Problem 34.)
Exercise 34
For bounded $f$ on $[a,b]$:
- Show $M_i’ - m_i’ \leq M_i - m_i$ for $|f|$.
- If $f$ is integrable, prove $|f|$ is integrable.
- For integrable $f,g$, show $\max(f,g)$ and $\min(f,g)$ are integrable.
- Prove $f$ is integrable iff $\max(f,0)$ and $\min(f,0)$ are integrable.
Exercise 35
For integrable $f$ on $[a,b]$, prove:
$$ \left| \int_a^b f\ \right| \leq \int_a^b |f| $$Exercise 36
For integrable $f,g \geq 0$ on $[a,b]$:
- Show $M_i \leq M_i’M_i’’$ and $m_i \geq m_i’m_i’’$ for $fg$.
- Prove: $$ U(fg,P) - L(fg,P) \leq \sum [M_i'M_i'' - m_i'm_i''](t_i - t_{i-1}) $$
- If $|f|,|g| \leq M$, show $U(fg,P) - L(fg,P) \leq M[U(f,P) - L(f,P) + U(g,P) - L(g,P)]$.
- Conclude $fg$ is integrable, extending to general $f,g$.
Exercise 37
For integrable $f,g$ on $[a,b]$:
- Prove the Cauchy-Schwarz inequality: $$ \left( \int_a^b fg \right)^2 \leq \left( \int_a^b f^2 \right) \left( \int_a^b g^2 \right) $$
- Provide three proofs (algebraic, geometric, creative).
- If equality holds, must $f = \lambda g$? Does continuity matter?
- Show $\left( \int_0^1 f \right)^2 \leq \int_0^1 f^2$. Extend to $[a,b]$.
Exercise 38
If $f$ is integrable on $[0,x]$ for all $x > 0$ and $\lim_{x \to \infty} f(x) = a$, prove:
$$ \lim_{x \to \infty} \frac{1}{x} \int_0^x f(t) \, dt = a $$(Hint: Split integral at $N$ where $f \approx a$ for $t \geq N$.)