Inverse Functions
Exercise 1
Find $ f^{-1} $ for each function $ f $
- $ f(x) = x^3 + 1 $
- $ f(x) = (x - 1)^3 $
- $ f(x) = \begin{cases} x & \text{rational} \ -x & \text{irrational} \end{cases} $
- $ f(x) = \begin{cases} -x^2 & x \geq 0 \ 1 - x^3 & x < 0 \end{cases} $
- $ f(x) = \begin{cases} x & x \neq a_i \ a_{i+1} & x = a_i \ (i < n) \ a_1 & x = a_n \end{cases} $
- $ f(x) = x + \lfloor x \rfloor $
- $ f(0.a_1a_2a_3\ldots) = 0.a_2a_1a_3\ldots $
- $ f(x) = \frac{x}{1 - x^2}, \ -1 < x < 1 $
Exercise 2
Describe $ f^{-1} $’s graph when $ f $ is:
- Increasing and positive
- Increasing and negative
- Decreasing and positive
- Decreasing and negative
Exercise 3 : Monotonicity Preservation
Prove $ f^{-1} $ is increasing when $ f $ is, and decreasing when $ f $ is.
Exercise 4 : Operations on Increasing Functions
If $ f $ and $ g $ are increasing, are these also increasing?
- $ f + g $
- $ f \cdot g $
- $ f \circ g $
Exercise 5 : Composition and Translation
- Prove $ f \circ g $ is one-one if $ f $ and $ g $ are, and find $ (f \circ g)^{-1} $
- Find $ g^{-1} $ if $ g(x) = 1 + f(x) $
Exercise 6 : Linear Fractional Transformations
Show $ f(x) = \frac{ax+b}{cx+d} $ is one-one iff $ ad-bc \neq 0 $, and find $ f^{-1} $.
Exercise 7 : One-One Intervals
Find intervals $[a,b]$ where these are one-one:
- $ f(x) = x^3 - 3x^2 $
- $ f(x) = x^5 + x $
- $ f(x) = \frac{1}{1+x^2} $
- $ f(x) = \frac{x+1}{x^2+1} $
Exercise 8 : Second Derivative of Inverse
Given $ f’(x) = (1+x^3)^{-1/2} $, show $ g = f^{-1} $ satisfies $ g’’(x) = \frac{3}{2}g(x)^2 $.
Exercise 9 : Differentiability of Inverses
If $ f $ is one-one and $ f^{-1} $ has nowhere-zero derivative, prove $ f $ is differentiable.
Exercise 10 : Differentiability Condition
What condition on $ g $ ensures $ f $ is differentiable? (Follow-up to 10-17)
Exercise 11 : Second Derivative Formula
Find a formula for $ (f^{-1})’’(x) $.
Exercise 12 : Higher Derivatives
Prove if $ f’(f^{-1}(x)) \neq 0 $ and $ f^{(k)}(f^{-1}(x)) $ exists, then $ (f^{-1})^{(k)}(x) $ exists.
Exercise 13 : Schwarzian Derivative
- Show $ \mathcal{D}f^{-1} $ exists if $ \mathcal{D}f $ exists
- Find formula for $ \mathcal{D}f^{-1}(x) $
Exercise 14 : Implicit Function I
- Prove $ f $ exists satisfying $ [f(x)]^5 + f(x) + x = 0 $
- Find $ f’ $ in terms of $ f $
- Find $ f’ $ via implicit differentiation
Exercise 15 : Implicit Function II
- Find two differentiable $ f $ satisfying $ x^2 + [f(x)]^2 = 1 $ on $(-1,1)$
- Find $ f $ satisfying $ x^2 + [f(x)]^2 = -1 $
- Find differentiable $ f $ satisfying $ [f(x)]^3 - 3f(x) = x $
Exercise 16 : Implicit Differentiation
- Apply to $ [f(x)]^2 + x^2 = 1 $
- Verify for solutions from 15(a)
- Apply to $ [f(x)]^3 - 3f(x) = x $
Exercise 17 : Higher Implicit Derivatives
- Find $ f’ $ and $ f’’ $ for $ x^3 + y^3 = 7 $
- For $ f(-1) = 2 $, find $ f’(-1) $ and $ f’’(-1) $
Exercise 18 : Tangent Line
Find tangent to $ 3x^3 + 4x^2y - xy^2 + 2y^3 = 4 $ at $(-1,1)$
Exercise 19 : Leibniz Notation
Rewrite in prime notation:
- $ y^4 + y^3 + xy = 1 $
- $ 4y^3y’ + 3y^2y’ + y + xy’ = 0 $
- $ y’ = \frac{-y}{4y^3 + 3y^2 + x} $
Exercise 20 : Inverse Function Notation
- State Theorem 5 in $ dx/dy $ notation
- Explain significance of: \[ \frac{dx^{1/n}}{dx} = \frac{1}{ny^{n-1}} \]
Exercise 21 : Integral Relationship
For $ f = F’ $ and $ G(x) = xf^{-1}(x) - F(f^{-1}(x)) $, prove $ G’(x) = f^{-1}(x) $
Exercise 22 : Chain Rule Application
Given $ h’(x) = \sin^2(\sin(x+1)) $, $ h(0) = 3 $, find:
- $ (h^{-1})’(3) $
- $ (\beta^{-1})’(3) $ where $ \beta(x) = h(x+1) $
Exercise 23 : Function Intersections
- Prove increasing/decreasing functions intersect at most once
- Find continuous increasing $ f,g $ intersecting only at integers
- Find continuous increasing $ f $ and decreasing $ g $ with no intersection
Exercise 24 : Involutions
- Prove continuous $ f = f^{-1} $ has fixed point
- Give examples with exactly one fixed point
- Prove increasing $ f = f^{-1} \Rightarrow f(x) = x $
Exercise 25 : Symmetric Graphs
Characterize functions whose graphs remain functions when reflected across $ y = -x $
Exercise 26 : Monotonicity
- Prove nondecreasing but not increasing implies constant on some interval
- Prove differentiable nondecreasing $ \Rightarrow f’ \geq 0 $
- Prove $ f’ \geq 0 \Rightarrow f $ nondecreasing
Exercise 27 : Dominated Decreasing Functions
- Given $ f(x) > 0 $ decreasing, find continuous decreasing $ g $ with $ 0 < g \leq f $
- Show we can have $ \lim_{x\to\infty} g(x)/f(x) = 0 $