Limits and Continuity
Exercise 1
Find the following limits:
- $\lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1}$
- $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}$
- $\lim_{x \to 3} \frac{x^3 - 8}{x^2 - 4}$ (Note the changed limit point)
- $\lim_{x \to y} \frac{x^n - y^n}{x - y}$
- $\lim_{y \to x} \frac{x^n - y^n}{x - y}$
- $\lim_{h \to 0} \frac{\sqrt{a + h} - \sqrt{a}}{h}$
Exercise 2
Find the following limits:
- $\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$
- $\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x}$
- $\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$
Exercise 3
In each of the following cases, determine the limit $l$ for the given $a$, and prove that it is the limit by showing how to find a $\delta$ such that $| f(x) - l | < \varepsilon$ where $\forall x$ satisfying $0 < |x-a| < \delta$
- $f(x) = x[3 - \cos(x^2)], \ a = 0$
- $f(x) = x^2 + 5x - 2, \ a = 2$
- $f(x) = \frac{100}{x}, \ a = 1$
- $f(x) = x^4, \ \text{arbitrary } a$
- $f(x) = x^4 + \frac{1}{x}, \ a = 1$
- $f(x) = \frac{x}{2 - \sin^2 x}, \ a = 0$
- $f(x) = \sqrt{|x|}, \ a = 0$
- $f(x) = \sqrt{x}, \ a = 1$
Exercise 4
Given functions $f$ and $g$ with properties:
\[ \text{If } 0 < |x - 2| < \epsilon^2, \text{ then } |g(x) - 4| < \epsilon \]
For each $\epsilon > 0$, find $\delta > 0$ such that:
- If $0 < |x - 2| < \delta$, then $|f(x) + g(x) - 6| < \epsilon$
- If $0 < |x - 2| < \delta$, then $|f(x)g(x) - 8| < \epsilon$
- If $0 < |x - 2| < \delta$, then $\left| \frac{1}{g(x)} - \frac{1}{4} \right| < \epsilon$
- If $0 < |x - 2| < \delta$, then $\left| \frac{f(x)}{g(x)} - \frac{1}{2} \right| < \epsilon$
Exercise 5
- If $\lim\limits_{x\to a}f(x)$ and $\lim\limits_{x\to a}g(x)$ do not exist, can $\lim\limits_{x\to a}[f(x)+g(x)]$ exist? Can $\lim\limits_{x\to a}f(x)g(x)$ exist?
- If $\lim\limits_{x\to a}f(x)$ exists and $\lim\limits_{x\to a}[f(x)+g(x)]$ exists, must $\lim\limits_{x\to a}g(x)$ exist?
- If $\lim\limits_{x\to a}f(x)$ exists and $\lim\limits_{x\to a}g(x)$ does not exist, can $\lim\limits_{x\to a}[f(x)+g(x)]$ exist?
- If $\lim\limits_{x\to a}f(x)$ exists and $\lim\limits_{x\to a}f(x)g(x)$ exists, does it follow that $\lim\limits_{x\to a}g(x)$ exists?
Exercise 6
Prove that $\lim\limits_{x\to a}f(x) = \lim\limits_{h\to 0}f(a+h)$.
Exercise 7
- Prove that $\lim\limits_{x\to a}f(x) = l$ if and only if $\lim\limits_{x\to a}[f(x)-l] = 0$.
- Prove that $\lim\limits_{x\to 0}f(x) = \lim\limits_{x\to a}f(x-a)$.
- Prove that $\lim\limits_{x\to 0}f(x) = \lim\limits_{x\to 0}f(x^3)$.
- Give an example where $\lim\limits_{x\to 0}f(x^2)$ exists, but $\lim\limits_{x\to 0}f(x)$ does not.
Exercise 8
Suppose there is a $\delta > 0$ such that $f(x) = g(x)$ when $0 < |x-a| < \delta$. Prove that $\lim\limits_{x\to a}f(x) = \lim\limits_{x\to a}g(x)$.
Exercise 9
- Suppose that $f(x) \leq g(x)$ for all $x$. Prove that $\lim\limits_{x\to a}f(x) \leq \lim\limits_{x\to a}g(x)$, provided these limits exist.
- How can the hypotheses be weakened?
- If $f(x) < g(x)$ for all $x$, does it necessarily follow that $\lim\limits_{x\to a}f(x) < \lim\limits_{x\to a}g(x)$?
Exercise 10
Suppose that $f(x) \leq g(x) \leq h(x)$ and that $\lim\limits_{x\to a}f(x) = \lim\limits_{x\to a}h(x)$. Prove that $\lim\limits_{x\to a}g(x)$ exists and equals $\lim\limits_{x\to a}f(x) = \lim\limits_{x\to a}h(x)$.
Exercise 11
- Prove that if $\lim\limits_{x\to 0}\frac{f(x)}{x} = l$ and $b \neq 0$, then $\lim\limits_{x\to 0}\frac{f(bx)}{x} = bl$.
- What happens if $b = 0$?
- Find $\lim\limits_{x\to 0}\frac{\sin 2x}{x}$ using $\lim\limits_{x\to 0}\frac{\sin x}{x}$ and another method.
Exercise 12
Evaluate in terms of $\alpha = \lim\limits_{x\to 0}\frac{\sin x}{x}$:
- $\lim\limits_{x\to 0}\frac{\sin 3x}{x}$
- $\lim\limits_{x\to 0}\frac{\sin ax}{\sin bx}$
- $\lim\limits_{x \to 0} \frac{\sin^2 2x}{x}$
- $\lim\limits_{x \to 0} \frac{\sin^2 2x}{x^2}$
- $\lim\limits_{x \to 0} \frac{1 - \cos x}{x^2}$
- $\lim\limits_{x \to 0} \frac{\tan^2 x + 2x}{x + x^2}$
- $\lim\limits_{x \to 0} \frac{x \sin x}{1 - \cos x}$
- $\lim\limits_{h \to 0} \frac{\sin(x + h) - \sin x}{h}$
- $\lim\limits_{x \to 1} \frac{\sin(x^2 - 1)}{x - 1}$
- $\lim\limits_{x \to 0} \frac{x^2 (3 + \sin x)}{(x + \sin x)^2}$
- $\lim\limits_{x \to 1} (x^2 - 1)^3 \sin \left( \frac{1}{x - 1} \right)^3$
Exercise 13
- Prove that if $\lim\limits_{x \to a} f(x) = l$, then $\lim\limits_{x \to a} |f|(x) = |l|$
- Prove that if $\lim\limits_{x \to a} f(x) = l$ and $\lim\limits_{x \to a} g(x) = m$, then:
a. $\lim\limits_{x \to a} \max(f, g)(x) = \max(l, m)$
b. Similarly for min
Exercise 14
- Prove that $\lim\limits_{x \to 0} 1/x$ does not exist (show $\lim\limits_{x \to 0} 1/x = l$ is false for every $l$)
- Prove that $\lim\limits_{x \to 1} 1/(x - 1)$ does not exist
Exercise 15
Prove that if $\lim\limits_{x \to a} f(x) = l$, then $\exists \delta > 0$ and $M$ such that $|f(x)| < M$ when $0 < |x - a| < \delta$
Exercise 16
Prove that if:
- $f(x) = 0$ for irrational $x$
- $f(x) = 1$ for rational $x$
Then $\lim\limits_{x \to a} f(x)$ does not exist for any $a$
Exercise 17
Prove that if:
- $f(x) = x$ for rational $x$
- $f(x) = -x$ for irrational $x$
Then $\lim\limits_{x \to a} f(x)$ does not exist if $a \neq 0$
Exercise 18
- Prove that if $\lim\limits_{x \to 0} g(x) = 0$, then $\lim\limits_{x \to 0} g(x) \sin(1/x) = 0$
- Generalization: If $\lim\limits_{x \to 0} g(x) = 0$ and $|h(x)| \leq M$ for all $x$, then $\lim\limits_{x \to 0} g(x)h(x) = 0$
Exercise 19
Consider a function $f$ with the property: if $g$ is any function where $\lim\limits_{x \to 0} g(x)$ DNE, then $\lim\limits_{x \to 0} [f(x) + g(x)]$ also DNE. Prove this occurs if and only if $\lim\limits_{x \to 0} f(x)$ exists.
Exercise 20
- If $\lim\limits_{x \to 0} f(x)$ exists and is $\neq 0$, and $\lim\limits_{x \to 0} g(x)$ DNE, prove $\lim\limits_{x \to 0} f(x)g(x)$ DNE
- Prove the same when $\lim\limits_{x \to 0} |f(x)| = \infty$
- If neither condition holds, show there exists $g$ where $\lim\limits_{x \to 0} g(x)$ DNE but $\lim\limits_{x \to 0} f(x)g(x)$ exists
Exercise 21
- For finite sets $A_n \subset [0,1]$ with $A_n \cap A_m = \emptyset$ ($m \neq n$), define:
\[ f(x) = \begin{cases} 1/n, & x \in A_n \\ 0, & x \notin \bigcup A_n \end{cases} \]
Prove $\lim\limits_{x \to a} f(x) = 0$ for all $a \in [0,1]$
Exercise 22
Explain why these are all correct definitions of $\lim\limits_{x \to a} f(x) = l$:
For $\delta > 0$, $\exists \varepsilon > 0$ such that:
- $0 < |x - a| < \varepsilon \implies |f(x) - l| < \delta$
- $0 < |x - a| < \varepsilon \implies |f(x) - l| \leq \delta$
- $0 < |x - a| < \varepsilon \implies |f(x) - l| < 5\delta$
- $0 < |x - a| < \varepsilon/10 \implies |f(x) - l| < \delta$
Exercise 23
Give counterexamples showing these definitions are incorrect:
- For all $\delta > 0$, $\exists \varepsilon > 0$ such that $0 < |x - a| < \delta \implies |f(x) - l| < \varepsilon$
- For all $\varepsilon > 0$, $\exists \delta > 0$ such that $|f(x) - l| < \varepsilon \implies 0 < |x - a| < \delta$
Exercise 24
Prove that $\lim\limits_{x \to a} f(x)$ exists if $\lim\limits_{x \to a^+} f(x) = \lim\limits_{x \to a^-} f(x)$
Exercise 25
Prove the following limit relations:
- $\lim\limits_{x \to 0^+} f(x) = \lim\limits_{x \to 0^-} f(-x)$
- $\lim\limits_{x \to 0} f(|x|) = \lim\limits_{x \to 0^+} f(x)$
- $\lim\limits_{x \to 0} f(x^2) = \lim\limits_{x \to 0^+} f(x)$
Exercise 26
- If $\lim\limits_{x \to a^-} f(x) < \lim\limits_{x \to a^+} f(x)$, prove $\exists \delta > 0$ such that $f(x) < f(y)$ whenever $x < a < y$ and $|x - a| < \delta$, $|y - a| < \delta$
- Determine whether the converse holds
Exercise 27
- Prove $\lim\limits_{x \to \infty} \frac{a_n x^n + \cdots + a_0}{b_m x^m + \cdots + b_0}$ exists iff $m \geq n$ ($a_n, b_m \neq 0$)
- Determine the limit when:
a. $m = n$
b. $m > n$
Exercise 28
Find the following limits:
- $\lim\limits_{x \to \infty} \frac{x + \sin^3 x}{5x + 6}$
- $\lim\limits_{x \to \infty} \frac{x \sin x}{x^2 + 5}$
- $\lim\limits_{x \to \infty} \sqrt{x^2 + x} - x$
- $\lim\limits_{x \to \infty} \frac{x^2 (1 + \sin^2 x)}{(x + \sin x)^2}$
Exercise 29
Prove $\lim\limits_{x \to 0^+} f(1/x) = \lim\limits_{x \to \infty} f(x)$
Exercise 30
Find in terms of $\alpha = \lim\limits_{x \to 0} \frac{\sin x}{x}$:
- $\lim\limits_{x \to \infty} \frac{\sin x}{x}$
- $\lim\limits_{x \to \infty} x \sin \frac{1}{x}$
Exercise 31
- Define $\lim\limits_{x \to -\infty} f(x) = l$
- Find $\lim\limits_{x \to -\infty} \frac{a_n x^n + \cdots + a_0}{b_m x^m + \cdots + b_0}$
- Prove $\lim\limits_{x \to -\infty} f(x) = \lim\limits_{x \to \infty} f(-x)$
- Prove $\lim\limits_{x \to 0^-} f(1/x) = \lim\limits_{x \to -\infty} f(x)$
Exercise 32
- Define $\lim\limits_{x \to a} f(x) = \infty$ (with formal $\epsilon-\delta$ definition)
- Show $\lim\limits_{x \to 3} \frac{1}{(x-3)^2} = \infty$
- If $f(x) > \epsilon > 0$ for all $x$ and $\lim\limits_{x \to a} g(x) = 0$, prove $\lim\limits_{x \to a} \frac{f(x)}{|g(x)|} = \infty$
Exercise 33
- Define:
a. $\lim\limits_{x \to a^+} f(x) = \infty$
b. $\lim\limits_{x \to a^-} f(x) = \infty$ - Prove $\lim\limits_{x \to 0^+} \frac{1}{x} = \infty$
- Prove $\lim\limits_{x \to 0^+} f(x) = \infty \iff \lim\limits_{x \to \infty} f(1/x) = \infty$
Exercise 34
Find these limits when they exist:
- $\lim\limits_{x \to \infty} \frac{x^3 + 4x - 7}{7x^2 - x + 1}$
- $\lim\limits_{x \to \infty} x(1 + \sin^2 x)$
- $\lim\limits_{x \to \infty} x \sin^2 x$
- $\lim\limits_{x \to \infty} x^2 \sin \frac{1}{x}$
- $\lim\limits_{x \to \infty} \sqrt{x^2 + 2x} - x$
- $\lim\limits_{x \to \infty} x(\sqrt{x + 2} - \sqrt{x})$
- $\lim\limits_{x \to \infty} \frac{\sqrt{|x|}}{x}$
Exercise 35
- Find perimeter of regular $n$-gon inscribed in circle radius $r$
- Determine perimeter’s limiting value as $n \to \infty$
- Identify the fundamental limit this suggests
Exercise 36
- For $c > 1$, prove $\lim\limits_{n \to \infty} c^{1/n} = 1$
Hint: Show $c^{1/n} \leq 1 + \epsilon$ for large $n$ and any $\epsilon > 0$ - Generalize to $c > 0$, prove $\lim\limits_{n \to \infty} c^{1/n} = 1$