Exponential, Logarithmic and Hyperbolic Functions

Exercise 1 : Basic Exponent Rules

Calculate the terms given in the next questions or give a transformation:

  1. $a^{-n}$
  2. $27^{\frac{1}{3}}$
  3. $a^{\frac{1}{n}}$
  4. $(0,1)^0$
  5. $(y^3)^2$
  6. $x^{-\frac{3}{2}}$
  7. $10^3 \cdot 10^{-3} \cdot 10^2$
  8. $3^{-3}$

Exercise 2 : Roots and Powers

Calculate the terms given in the next questions or give a transformation:

  1. $(\sqrt{2})^2$
  2. $e^{\frac{1}{10}}$
  3. $(\ln 2)^0$
  4. $\sqrt{5} \cdot \sqrt{7}$
  5. $(0,5)^2 \cdot (0,5)^{-4} \cdot (0,5)^0$
  6. $\sqrt{8} \cdot \sqrt{3}$

Exercise 3 : Common Logarithms (base 10)

Calculate the terms given in the next questions or give a transformation:

  1. $\lg 100$
  2. $\lg \frac{1}{1000}$
  3. $10 \cdot \lg 10$
  4. $\lg 10^6$
  5. $10^{\lg 10}$
  6. $(\lg 10)^0$

Exercise 4 : Binary Logarithms (ld)

Calculate the terms given in the next questions or give a transformation:

  1. $ld 8$
  2. $ld 2^5$
  3. $a^3 \cdot ld 4$
  4. $(ld 2)^2$
  5. $2^{ld a}$
  6. $2^{ld 2}$

Exercise 5 : Natural Logarithm and e

Calculate the terms given in the next questions or give a transformation:

  1. $e^{\ln e}$
  2. $e^{\ln 3}$
  3. $\ln e^3$
  4. $(e^{\ln 3})^0$
  5. $(\ln e)^{e^4}$
  6. $\ln (e \cdot e^4)$

Exercise 6 : Logarithm and Exponential Identities

Calculate the terms given in the next questions or give a transformation:

  1. $\lg 10^x$
  2. $\lg \frac{1}{10^x}$
  3. $\ln (e^{2x} \cdot e^{5x})$
  4. $\frac{1}{n} \lg a$
  5. $ld (4^n)$
  6. $m \cdot ld 5$

Exercise 7 : Logarithm Properties and Simplifications

Calculate the terms given in the next questions or give a transformation:

  1. $\ln(a \cdot b)$
  2. $\lg x^2$
  3. $ld(4 \cdot 16)$
  4. $ld \sqrt{x}$
  5. $\ln(e^{3x} \cdot e^{5x})$
  6. $\lg \frac{10^x}{10^3}$

Exercise 8 : Inverse Functions

Calculate the inverse functions:

  1. $y = 2x - 5$
  2. $y = 8x^3 + 1$
  3. $y = \ln 2x$

Exercise 9 : Composite Functions

Calculate the function of a function:

  1. $y = u^3$, $u = g(x) = x - 1$; Wanted: $y = f(g(x))$
  2. $y = \frac{u + 1}{u - 1}$, $u = x^2$; Wanted: $y = f(g(x))$
  3. $y = u^2 - 1$, $u = \sqrt{x^3 + 2}$; Wanted: $y = f(g(x))$
  4. $y = \frac{1}{2}u$, $u = g(x) = x^2 - 4$; Wanted: $y = f(g(1))$
  5. $y = u + \sqrt{u}$, $u = \frac{x^2}{4}$; Wanted: $y = f(g(2))$
  6. $y = \sin(u + \pi)$, $u = \frac{\pi}{2}x$; Wanted: $y = f(g(1))$

Exercise 10 : Hyperbolic Functions and Identities

Calculate the terms or prove the identities below:

  1. Show that $\cosh^2 x - \sinh^2 x = 1$
  2. Express $\tanh x$ in terms of $e^x$ and $e^{-x}$
  3. Calculate $\sinh(\ln 2)$ and $\cosh(\ln 2)$ in terms of powers of 2
  4. Simplify $\sinh(2x)$ using addition formulas
  5. Verify $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$

Exercise 11 : Solving Exponential and Logarithmic Equations

Solve for $x$ in each equation:

  1. $2^x = 5$
  2. $e^{2x} = 7$
  3. $\ln(x+3) = 2$
  4. $\log_{10}(3x) = -1$
  5. $3^{x+1} = 9 \cdot 2^{x-1}$

Exercise 12 : Change of Base & Applications

Use change of base or other log rules to transform and compute:

  1. $\log_2 10$ (write using common logs)
  2. $\log_5 125$
  3. Express $\ln a$ in terms of $\lg a$
  4. Evaluate $\log_{\frac{1}{2}} 8$
  5. Simplify $\log_b(a^n) - n \log_b a$

Exercise 13 : Graphs and Transformations

For each function, describe key features (domain, range, intercepts) and the effect of the transformation compared to the parent function:

  1. $y = e^{x-2}$
  2. $y = e^{-x} + 3$
  3. $y = \ln(x+4)$
  4. $y = -\ln x$
  5. Sketch (or describe) how $y = 2^{x} - 1$ differs from $y = 2^{x}$