Léisung zu dësen Exercicer sinn am Archiv op luxformel ze fannen.
Complex Numbers and Vector Space
Exercise 1 : Complex Number Inverse
Suppose $a $ and $b $ are real numbers, not both 0. Find real numbers $c $ and $d $ such that
Exercise 2 : Cube Root of Unity
Show that
is a cube root of 1 (meaning that its cube equals 1).
Exercise 3 : Square Roots of $i $
Find two distinct square roots of $i $ (i.e., find two different complex numbers $z $ such that $z^2 = i $).
Exercise 4
Prove the following properties and name them:
- Show that $\alpha + \beta = \beta + \alpha $ for all $\alpha, \beta \in \mathbb{C} $.
- Show that $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda) $ for all $\alpha, \beta, \lambda \in \mathbb{C} $.
- Show that $(\alpha\beta)\lambda = \alpha(\beta\lambda) $ for all $\alpha, \beta, \lambda \in \mathbb{C} $.
- Show that for every $\alpha \in \mathbb{C} $, there exists a unique $\beta \in \mathbb{C} $ such that $\alpha + \beta = 0 $.
- Show that for every $\alpha \in \mathbb{C} $ with $\alpha \neq 0 $, there exists a unique $\beta \in \mathbb{C} $ such that $\alpha\beta = 1 $.
- Show that $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta $ for all $\lambda, \alpha, \beta \in \mathbb{C} $.
Exercise 5 : Vector Equation in $\mathbb{R}^4 $
Find $x \in \mathbb{R}^4 $ such that
Exercise 6 : Non-Existence of Scalar Multiplication
Explain why there does not exist $\lambda \in \mathbb{C} $ such that
Exercise 7
Prove the following:
- Show that $(x + y) + z = x + (y + z) $ for all $x, y, z \in \mathbb{F}^n $.
- Show that $(ab)x = a(bx) $ for all $x \in \mathbb{F}^n $ and all $a, b \in \mathbb{F} $.
- Show that $1x = x $ for all $x \in \mathbb{F}^n $, where 1 is the multiplicative identity in $\mathbb{F} $.
- Show that $\lambda(x + y) = \lambda x + \lambda y $ for all $\lambda \in \mathbb{F} $ and all $x, y \in \mathbb{F}^n $.
- Show that $(a + b)x = ax + bx $ for all $a, b \in \mathbb{F} $ and all $x \in \mathbb{F}^n $.