Eigenvalues and Eigenvectors of Real Matrices
Exercise 1 : Eigenvalues — 2x2 real matrix
For $A = \begin{pmatrix} 4 & 2 \ 1 & 3 \end{pmatrix}$ find the eigenvalues.
Exercise 2 : Real vs Complex Eigenvalues — 2x2 question
Is it possible for a real $2 \times 2$ matrix to have one real and one complex eigenvalue?
Exercise 3 : No Real Eigenvalues — rotation-like matrix
Prove that there are no real eigenvalues of the matrix $A = \begin{pmatrix} 3 & 2 \ -2 & 1 \end{pmatrix}$
Exercise 4 : Eigenvalues and Eigenvectors — 3x3 computation
- For $A = \begin{pmatrix} -1 & -1 & 1 \ -4 & 2 & 4 \ -1 & 1 & 5 \end{pmatrix}$ find all the eigenvalues.
- Find corresponding eigenvectors.
Exercise 5 : Defective Matrix — repeated eigenvalue
Find the roots of the characteristic equation for $A = \begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$. Then try to find corresponding eigenvectors.
Exercise 6 : Diagonalization Criteria — theory and practice
- State the necessary and sufficient conditions for a real matrix to be diagonalizable over $\mathbb{R}$.
- Decide whether the matrix $B=\begin{pmatrix} 2 & 0 & 0 \ 0 & 3 & 1 \ 0 & 0 & 3 \end{pmatrix}$ is diagonalizable. Justify your answer.
Exercise 7 : Algebraic and Geometric Multiplicity — multiplicities
For $C=\begin{pmatrix} 4 & 1 & 0 \ 0 & 4 & 1 \ 0 & 0 & 4 \end{pmatrix}$ compute the algebraic multiplicity and geometric multiplicity of the eigenvalue $4$. Explain the relationship between them and consequences for diagonalizability.
Exercise 8 : Symmetric Matrices — orthogonal diagonalization
- Show that a real symmetric matrix has real eigenvalues and orthogonal eigenvectors (state the spectral theorem for symmetric matrices).
- Compute the eigenvalues and an orthonormal set of eigenvectors for $D=\begin{pmatrix} 2 & -1 \ -1 & 2 \end{pmatrix}$.
Exercise 9 : Complex Eigenpairs and Real Matrices — conjugate pairs
Let $E=\begin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$.
- Compute the eigenvalues and eigenvectors of $E$ over $\mathbb{C}$.
- Explain why complex eigenvalues of real matrices occur in conjugate pairs and how to form real 2D invariant subspaces from such pairs.
Exercise 10 : Jordan Blocks and Generalized Eigenvectors — small Jordan example
- For $F=\begin{pmatrix} 5 & 1 \ 0 & 5 \end{pmatrix}$ find the Jordan normal form and a chain of generalized eigenvectors.
- Explain why the presence of a nontrivial Jordan block prevents diagonalization.
Exercise 11 : Matrix Exponential via Diagonalization and Jordan Form
- If $A$ is diagonalizable with $A=SDS^{-1}$, express $e^{tA}$ in terms of $S,D$.
- Compute $e^{tF}$ for $F$ from Exercise 10 using its Jordan form.
Exercise 12 : Applications — mechanical system and modes
Consider the matrix $M=\begin{pmatrix} 0 & 1 \ -2 & -3 \end{pmatrix}$ arising from a simple damped oscillator linearization.
- Find eigenvalues and determine whether the system is overdamped, underdamped, or critically damped.
- If eigenvectors exist, write the general solution of $\dot{x}=Mx$ using eigen-decomposition (or explain the Jordan approach if defective).