Vectors and Matrices
Exercise 1
Consider the following vectors in $ \mathbb{R}^7 $:
$$ u = (0.5, 0.4, 0.4, 0.5, 0.1, 0.4, 0.1), \quad v = (-1, -2, 1, -2, 3, 1, -5) $$- Check if $ u $ and $ v $ are unit vectors.
- Calculate the dot product of the vectors $ u $ and $ v $.
- Are $ u $ and $ v $ orthogonal?
Exercise 2
Consider the following vectors in $ \mathbb{R}^9 $:
$$ u = (1, 2, 5, 2, -3, 1, 2, 6, 2), $$$$ v = (-4, 3, -2, 2, 1, -3, 4, 1, -2) $$
$$ w = (3, 3, -3, -1, 6, -1, 2, -5, -7) $$
- Which pairs of these vectors are orthogonal?
- Calculate the Euclidean norm of $ u $.
- Calculate the infinity norm of $ w $.
Exercise 3
Consider the following matrices:
$$ A = \begin{pmatrix} 2 & -2 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{pmatrix}, \quad D = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix} $$$$ E = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}, \quad F = \begin{pmatrix} -2 & 1 & 0 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 4 \end{pmatrix} $$
-
Calculate, if possible:
- $ A + B $
- $ B - A $
- $ B + C $
- $ AB $
- $ BA $
- $ BG $
- $ CE $
- $ EF $
- $ FE $
-
Write the transposes of $ A $ and $ B $ and calculate their product. Which property can one observe?
Exercise 4
Consider the following matrices:
$$ A = \begin{pmatrix} 2 & -2 \\ -3 & 1 \\ 5 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 4 & 4 \\ -2 & 3 & -7 \\ 2 & 5 & -7 \end{pmatrix}, \quad C = \begin{pmatrix} 4 & -1 & 2 \\ -8 & 2 & -4 \\ 2 & 1 & -4 \end{pmatrix} $$- Compute $ A^T B $ and $ C + B $.
- Which of the matrices $ A $, $ B $, $ C $ are full rank?
- Calculate the Frobenius norm of $ C $ and the spectral norm of $ A $.
- Calculate the inverse of $ B $.
Exercise 5
Consider the matrices of Exercise 3.
- Calculate the determinants of the matrices $ A $, $ B $, and $ AB $.
- Calculate the determinants of the matrices $ C $ and $ D $.
Exercise 6
Consider the following matrices:
$$ A = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 4 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 6 & -9 \\ -4 & 6 \end{pmatrix}, \quad D = \begin{pmatrix} -1 & 6 & 2 \\ 0 & 1 & 0 \\ 3 & 0 & -5 \end{pmatrix} $$Calculate, if possible, the inverses of the matrices $ A $, $ B $, $ C $, and $ D $.
Exercise 7
Consider the matrix:
$$ A = \begin{pmatrix} 2 & 2 & 3 \\ -2 & 7 & 4 \\ -3 & -3 & -4 \\ -8 & 2 & 3 \end{pmatrix} $$- Add a column to $ A $ so that it is invertible.
- Remove a row from $ A $ so that it is invertible.
- Calculate $ AA^T $. Is it invertible?
- Calculate $ A^T A $. Is it invertible?
Exercise 8
- Calculate the inverse of the matrix $ M = \begin{pmatrix} 3 & 2 & -1 \ 1 & -1 & 1 \ 2 & -4 & 5 \end{pmatrix} $.
- Use this inverse to solve the linear system: $$ \begin{cases} 3x + 2y - z = 5 \\ x - y + z = 1 \\ 2x - 4y + 5z = -3 \end{cases} $$
Exercise 9
Solve the systems: