Differential Calculus
Exercise 1
Calculate the directional derivative of $f(x,y,z) = x^2y + y^2z$ in the direction of $\hat{\mathbf{n}} = (\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}})\sqrt{3}$ at point $(1,2,3)$.
Exercise 2
Compute the gradient of the following scalar fields:
- $f(x,y,z) = x^2 + 2xy + 3z + 4$
- $g(x,y,z) = \sin x \sin y \sin z$
- $h(x,y,z) = e^{-5x}\sin 4y\cos 3z$
Exercise 3
For the vector field $\mathbf{F} = x^2\hat{\mathbf{x}} + 3xz^2\hat{\mathbf{y}} - 2xz\hat{\mathbf{z}}$:
- Calculate $\nabla\cdot\mathbf{F}$
- Calculate $\nabla\times\mathbf{F}$
Exercise 4
For $\mathbf{V} = (2xy+z^3)\hat{\mathbf{x}} + (x^2+2y)\hat{\mathbf{y}} + (3xz^2-2z)\hat{\mathbf{z}}$:
- Determine if $\mathbf{V}$ is conservative
- If so, find the corresponding potential function
Exercise 5
Verify the product rule $\nabla(fg) = f\nabla g + g\nabla f$ for:
$f(x,y,z) = x^2 + y^2$ and $g(x,y,z) = e^{-z}\sin x$
Exercise 6
For $\mathbf{A} = x\hat{\mathbf{x}} + 2y\hat{\mathbf{y}} + 3z\hat{\mathbf{z}}$ and $\mathbf{B} = 3y\hat{\mathbf{x}} - 2x\hat{\mathbf{y}}$:
- Verify $\nabla(\mathbf{A}\cdot\mathbf{B}) = \mathbf{A}\times(\nabla\times\mathbf{B}) + \mathbf{B}\times(\nabla\times\mathbf{A}) + (\mathbf{A}\cdot\nabla)\mathbf{B} + (\mathbf{B}\cdot\nabla)\mathbf{A}$
- Verify $\nabla\cdot(\mathbf{A}\times\mathbf{B}) = \mathbf{B}\cdot(\nabla\times\mathbf{A}) - \mathbf{A}\cdot(\nabla\times\mathbf{B})$
- Verify $\nabla\times(\mathbf{A}\times\mathbf{B}) = (\mathbf{B}\cdot\nabla)\mathbf{A} - (\mathbf{A}\cdot\nabla)\mathbf{B} + \mathbf{A}(\nabla\cdot\mathbf{B}) - \mathbf{B}(\nabla\cdot\mathbf{A})$
Exercise 7
For $\mathbf{F} = xy\hat{\mathbf{x}} + yz\hat{\mathbf{y}} + zx\hat{\mathbf{z}}$ and $g(x,y,z) = x^2 + y^2 + z^2$:
Verify $\nabla\times(g\mathbf{F}) = g(\nabla\times\mathbf{F}) - \mathbf{F}\times(\nabla g)$
Exercise 8
Derive and verify the quotient rules:
- $\nabla\left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$
- $\nabla\cdot\left(\frac{\mathbf{A}}{g}\right) = \frac{g\nabla\cdot\mathbf{A} - \mathbf{A}\cdot\nabla g}{g^2}$
- $\nabla\times\left(\frac{\mathbf{A}}{g}\right) = \frac{g(\nabla\times\mathbf{A}) + \mathbf{A}\times\nabla g}{g^2}$
Use $f(x,y,z) = x^2 + y^2$, $\mathbf{A} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$, and $g(x,y,z) = x^2 + y^2 + z^2$ for verification.
Exercise 9
Calculate the Laplacian of:
- $T_a = x^2 + 2xy + 3z + 4$
- $T_b = \sin x \sin y \sin z$
- $T_c = e^{-5x}\sin 4y\cos 3z$
- $\mathbf{v} = x^2\hat{\mathbf{x}} + 3xz^2\hat{\mathbf{y}} - 2xz\hat{\mathbf{z}}$
Exercise 10
Prove the following identities:
- $\nabla\times(\nabla f) = 0$ for any scalar field $f$
- $\nabla\cdot(\nabla\times\mathbf{F}) = 0$ for any vector field $\mathbf{F}$
Exercise 11
Verify $\nabla\times(\nabla f) = 0$ using $f(x,y,z) = \sin x \sin y \sin z$.
Exercise 12
Verify $\nabla\cdot(\nabla\times\mathbf{F}) = 0$ using $\mathbf{F} = x^2\hat{\mathbf{x}} + 3xz^2\hat{\mathbf{y}} - 2xz\hat{\mathbf{z}}$.
Exercise 13
Construct a non-constant vector field that satisfies both $\nabla\cdot\mathbf{F} = 0$ and $\nabla\times\mathbf{F} = 0$ everywhere.
Exercise 14
For $\mathbf{F} = (x^2+y^2)\hat{\mathbf{x}} + (y^2+z^2)\hat{\mathbf{y}} + (z^2+x^2)\hat{\mathbf{z}}$:
- Show that $\nabla\times\mathbf{F} \neq 0$ but has a simple form
- Interpret the physical meaning of your result
Exercise 15
Express the Laplacian $\nabla^2$ in cylindrical coordinates $(\rho,\phi,z)$ for a scalar function $\Phi$.
Exercise 16
Express the gradient operator $\nabla$ in spherical coordinates $(r,\theta,\phi)$.
Exercise 17
For vector fields $\mathbf{A}$ and $\mathbf{B}$:
- Define the operator $(\mathbf{A}\cdot\nabla)\mathbf{B}$ and express it in Cartesian components
- Compute $(\hat{\mathbf{r}}\cdot\nabla)\hat{\mathbf{r}}$ where $\hat{\mathbf{r}} = \mathbf{r}/|\mathbf{r}|$
- For $\mathbf{v}_a = x^2\hat{\mathbf{x}} + 3xz^2\hat{\mathbf{y}} - 2xz\hat{\mathbf{z}}$ and $\mathbf{v}_b = xy\hat{\mathbf{x}} + 2yz\hat{\mathbf{y}} + 3zx\hat{\mathbf{z}}$, evaluate $(\mathbf{v}_a\cdot\nabla)\mathbf{v}_b$
Exercise 18
Prove the vector triple product identity for the gradient:
$\nabla\times(\mathbf{A}\times\mathbf{B}) = (\mathbf{B}\cdot\nabla)\mathbf{A} - (\mathbf{A}\cdot\nabla)\mathbf{B} + \mathbf{A}(\nabla\cdot\mathbf{B}) - \mathbf{B}(\nabla\cdot\mathbf{A})$
Exercise 19
Prove the gradient of a dot product identity:
$\nabla(\mathbf{A}\cdot\mathbf{B}) = \mathbf{A}\times(\nabla\times\mathbf{B}) + \mathbf{B}\times(\nabla\times\mathbf{A}) + (\mathbf{A}\cdot\nabla)\mathbf{B} + (\mathbf{B}\cdot\nabla)\mathbf{A}$
Exercise 20
Show that:
- Any vector field of the form $\mathbf{F} = \nabla f$ is irrotational
- Any vector field of the form $\mathbf{F} = \nabla\times\mathbf{G}$ is solenoidal
- Discuss the Helmholtz decomposition theorem in this context