Theory of Vector Fields
Exercise 1 : Basic Operations on Vector Fields
Given the vector fields:
- $\mathbf{F}_1 = x^2 \hat{\mathbf{z}}$
- $\mathbf{F}_2 = x \hat{\mathbf{x}} + y \hat{\mathbf{y}} + z \hat{\mathbf{z}}$
- $\mathbf{F}_3 = yz\hat{x} + zx\hat{y} + xy\hat{z}$
- Calculate $\nabla \cdot \mathbf{F}_i$ and $\nabla \times \mathbf{F}_i$ for $i=1,2,3$.
- Which fields are conservative? Find scalar potentials where possible.
- Which fields are solenoidal? Find vector potentials where possible.
- Show that $\mathbf{F}_3$ can be expressed both as a gradient and a curl.
Exercise 2 : Helmholtz Theorem Implications
For a vector field $\mathbf{F}$ in 3D, prove the following implications:
- $\mathbf{F} = -\nabla V$ ⇒ $\nabla \times \mathbf{F} = \mathbf{0}$
- $\nabla \times \mathbf{F} = \mathbf{0}$ ⇒ $\oint \mathbf{F} \cdot d\mathbf{l} = 0$
- $\oint \mathbf{F} \cdot d\mathbf{l} = 0$ ⇒ $\mathbf{F} = -\nabla V$
Exercise 3 : Divergence Theorem Applications
Check the divergence theorem for:
-
$\mathbf{v}_1 = r^2 \cos \theta , \hat{\mathbf{r}} + r^2 \cos \phi , \hat{\boldsymbol{\theta}} - r^2 \cos \theta \sin \phi , \hat{\boldsymbol{\phi}}$ Use one octant of a sphere of radius $R$. [Answer: $\pi R^4/4$]
-
$\mathbf{v}_2 = r^2 \sin \theta , \hat{\mathbf{r}} + 4r^2 \cos \theta , \hat{\boldsymbol{\theta}} + r^2 \tan \theta , \hat{\boldsymbol{\phi}}$ Use an “ice-cream cone” volume (spherical cap with cone). [Answer: $\frac{\pi R^4}{12}(2\pi + 3\sqrt{3})$]
Exercise 4 : Stokes’ Theorem Applications
Verify Stokes’ theorem for:
- $\mathbf{v}_1 = a y , \hat{\mathbf{x}} + b x , \hat{\mathbf{y}}$ over a circular path of radius $R$ in the $xy$-plane. [Answer: $\pi R^2(b-a)$]
- $\mathbf{v}_2 = y \hat{\mathbf{z}}$ over a triangular surface. [Answer: $a^2$]
Exercise 5 : Line Integrals and Stokes’ Theorem
Compute the line integral of:
- $\mathbf{v} = 6\hat{\mathbf{x}} + yz^2\hat{\mathbf{y}} + (3y+z)\hat{\mathbf{z}}$ along a triangular path. Verify with Stokes’ theorem. [Answer: $8/3$]
- $\mathbf{v} = (r\cos^2\theta)\hat{\mathbf{r}} - (r\cos\theta\sin\theta)\hat{\boldsymbol{\theta}} + 3r\hat{\boldsymbol{\phi}}$ around a specified path. [Answer: $3\pi/2$]
Exercise 6 : Fundamental Theorem Relationships
- Combine the gradient theorem corollary with Stokes’ theorem. Show consistency with properties of second derivatives.
- Combine the Stokes’ theorem corollary with the divergence theorem. Show consistency.
- Prove: $\nabla \times (\nabla T) = \mathbf{0}$ using integral theorems.
- Prove: $\nabla \cdot (\nabla \times \mathbf{v}) = 0$ using integral theorems.
Exercise 7 : Vector Calculus Identities
Prove these corollaries of the fundamental theorems:
- $\int_V (\nabla T) , d\tau = \oint_S T , d\mathbf{a}$
- $\int_V (\nabla \times \mathbf{v}) , d\tau = -\oint_S \mathbf{v} \times d\mathbf{a}$
- $\int_V [T\nabla^2 U + (\nabla T)\cdot(\nabla U)] , d\tau = \oint_S (T\nabla U)\cdot d\mathbf{a}$
- $\oint_S \nabla T \times d\mathbf{a} = -\oint_P T , d\mathbf{l}$
Exercise 8 : Vector Area Concept
For $\mathbf{a} \equiv \int_S d\mathbf{a}$:
- Find $\mathbf{a}$ for a hemispherical bowl of radius $R$.
- Prove $\mathbf{a} = \mathbf{0}$ for any closed surface.
- Show $\mathbf{a}$ is invariant for surfaces with the same boundary.
- Prove $\mathbf{a} = \frac{1}{2}\oint \mathbf{r} \times d\mathbf{l}$.
- Show $\oint (\mathbf{c}\cdot\mathbf{r}) , d\mathbf{l} = \mathbf{a} \times \mathbf{c}$ for constant $\mathbf{c}$.
Exercise 9 : Delta Function Representations
- Compute $\nabla \cdot (\hat{\mathbf{r}}/r)$ directly and via divergence theorem. Is there a delta function at the origin?
- Find the general formula for $\nabla \cdot (r^n \hat{\mathbf{r}})$. [Answer: $(n+2)r^{n-1}$ except $n=-2$ gives $4\pi\delta^3(\mathbf{r})$]
- Compute $\nabla \times (r^n \hat{\mathbf{r}})$. [Answer: $\mathbf{0}$]
Exercise 10 : Regularized Laplacian
Consider $D(r,\epsilon) \equiv -\frac{1}{4\pi}\nabla^2\left(\frac{1}{\sqrt{r^2+\epsilon^2}}\right)$:
- Show $D(r,\epsilon) = \frac{3\epsilon^2}{4\pi}(r^2+\epsilon^2)^{-5/2}$
- Verify $D(0,\epsilon) \to \infty$ as $\epsilon \to 0$
- Verify $D(r,\epsilon) \to 0$ as $\epsilon \to 0$ for $r \neq 0$
- Show $\int_{\text{all space}} D(r,\epsilon) , d\tau = 1$
- Conclude $\nabla^2(1/r) = -4\pi\delta^3(\mathbf{r})$
Exercise 11 : Conservative Field and Line Integral
For $\mathbf{F} = (2xy+z^3)\hat{\mathbf{x}} + x^2\hat{\mathbf{y}} + 3xz^2\hat{\mathbf{z}}$:
- Is $\mathbf{F}$ conservative? If so, find its potential.
- Compute $\nabla \times \mathbf{F}$.
- Evaluate $\int_C \mathbf{F}\cdot d\mathbf{l}$ from $(0,0,0)$ to $(1,1,1)$ along $x=t, y=t^2, z=t^3$.
Exercise 12 : Divergence & Stokes — Simple Examples
Verify both divergence and Stokes’ theorems for $\mathbf{v} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$ over:
- A cube of side length $a$
- A sphere of radius $R$
Exercise 13 : Vector Potentials for Common Fields
Find vector potentials for:
- $\mathbf{B} = \frac{\mu_0 I}{2\pi}\frac{1}{r}\hat{\boldsymbol{\phi}}$ (magnetic field of a wire)
- $\mathbf{B} = B_0\hat{\mathbf{z}}$ (uniform field)
Exercise 14 : Uniqueness from Vanishing Divergence & Curl
Show that if $\nabla\cdot\mathbf{F} = 0$ and $\nabla\times\mathbf{F} = \mathbf{0}$ everywhere, and $\mathbf{F} \to 0$ at infinity, then $\mathbf{F} \equiv \mathbf{0}$.
Exercise 15 : Coordinate-Free Vector Identities
Prove without using coordinates:
- $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B}\cdot(\nabla\times\mathbf{A}) - \mathbf{A}\cdot(\nabla\times\mathbf{B})$
- $\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A}(\nabla\cdot\mathbf{B}) - \mathbf{B}(\nabla\cdot\mathbf{A}) + (\mathbf{B}\cdot\nabla)\mathbf{A} - (\mathbf{A}\cdot\nabla)\mathbf{B}$
- $\nabla(\mathbf{A}\cdot\mathbf{B}) = \mathbf{A}\times(\nabla\times\mathbf{B}) + \mathbf{B}\times(\nabla\times\mathbf{A}) + (\mathbf{A}\cdot\nabla)\mathbf{B} + (\mathbf{B}\cdot\nabla)\mathbf{A}$