Limits and Continuity Exercise 1 Find the following limits:
$\lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1}$ $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}$ $\lim_{x \to 3} \frac{x^3 - 8}{x^2 - 4}$ (Note the changed limit point) $\lim_{x \to y} \frac{x^n - y^n}{x - y}$ $\lim_{y \to x} \frac{x^n - y^n}{x - y}$ $\lim_{h \to 0} \frac{\sqrt{a + h} - \sqrt{a}}{h}$ Exercise 2 Find the following limits:
$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$ $\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x}$ $\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$ Exercise 3 In each of the following cases, determine the limit $l$ for the given $a$, and prove that it is the limit by showing how to find a $\delta$ such that $| f(x) - l | < \varepsilon$ where $\forall x$ satisfying $0 < |x-a| < \delta$
...