Inverse Functions
Inverse Functions Exercise 1 Find $ f^{-1} $ for each function $ f $ $ f(x) = x^3 + 1 $ $ f(x) = (x - 1)^3 $ $ f(x) = \begin{cases} x & \text{rational} \ -x & \text{irrational} \end{cases} $ $ f(x) = \begin{cases} -x^2 & x \geq 0 \ 1 - x^3 & x < 0 \end{cases} $ $ f(x) = \begin{cases} x & x \neq a_i \ a_{i+1} & x = a_i \ (i < n) \ a_1 & x = a_n \end{cases} $ $ f(x) = x + \lfloor x \rfloor $ $ f(0.a_1a_2a_3\ldots) = 0.a_2a_1a_3\ldots $ $ f(x) = \frac{x}{1 - x^2}, \ -1 < x < 1 $ Exercise 2 Describe $ f^{-1} $’s graph when $ f $ is: ...