Subspaces

Subspaces Exercise 1 For each of the following subsets of $\mathbb{F}^3$, determine whether it is a subspace of $\mathbb{F}^3$: ${(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 0}$ ${(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 + 2x_2 + 3x_3 = 4}$ ${(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 x_2 x_3 = 0}$ ${(x_1, x_2, x_3) \in \mathbb{F}^3 : x_1 = 5x_3}$ Exercise 2 Show that the set of differentiable real-valued functions $f$ on the interval $(-4, 4)$ such that $f’( -1) = 3f(2)$ is a subspace of $\mathbb{R}^{(-4, 4)}$. ...

September 9, 2025 · 887 wierder

Span and Linear Independence

Span and Linear Independence Exercise 1 Suppose $v_1, v_2, v_3, v_4$ spans $V$. Prove that the list $$v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4$$ also spans $V$. Exercise 2 Verify the assertions: A list $v$ of one vector $v \in V$ is linearly independent if and only if $v \neq 0$. A list of two vectors in $V$ is linearly independent if and only if neither vector is a scalar multiple of the other. ...

September 8, 2025 · 544 wierder

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Exercise 1 Confirm by multiplication that x is an eigenvector of A, and find the corresponding eigenvalue. \( A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \) \( A = \begin{bmatrix} 5 & -1 \\ 3 & 2 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) \( A = \begin{bmatrix} 4 & 0 & 0 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) \( A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) Exercise 2 Find the characteristic equation, the eigenvalues, and bases for the eigenspaces of the matrix. ...

September 7, 2025 · 2121 wierder

Inner Product Spaces

Inner Product Spaces Exercise 1 In each part, determine whether the set of vectors is orthogonal and whether it is orthonormal with respect to the Euclidean inner product on ℝ². $ (0, 1), (2, 0) $ $(- \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ $(- \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ $ (0, 0), (0, 1) $ Exercise 2 In each part, determine whether the set of vectors is orthogonal and whether it is orthonormal with respect to the Euclidean inner product on $\mathbb{R}^2$. ...

September 7, 2025 · 929 wierder

Inner Products

Inner Products Exercise 1 Let $\mathbb{R}^2$ have the weighted Euclidean inner product: $$ \langle u, v \rangle = 2u_1v_1 + 3u_2v_2 $$and let $u = (1, 1)$, $v = (3, 2)$, $w = (0, -1)$, and $k = 3$. Compute the stated quantities. $ \langle u,v \rangle $ $ \langle ku,w \rangle $ $ \langle u+v , w \rangle $ $ | v | $ $ d\langle u,v \rangle $ $ | u-kv | $ Exercise 2 Let $\mathbb{R}^2$ have the weighted Euclidean inner product: ...

September 7, 2025 · 1443 wierder

Definition of Vector Space

Definition of Vector Space Exercise 1: Double Additive Inverse Prove that $ -(-v) = v $ for every $ v \in V $, where $ V $ is a vector space. Exercise 2: Zero Product Property Suppose $ a \in \mathbb{F} $ (a field), $ v \in V $, and $ av = 0 $. Prove that $ a = 0 $ or $ v = 0 $. Exercise 3: Unique Solution to Vector Equation Suppose $ v, w \in V $. Explain why there exists a unique $ x \in V $ such that $ v + 3x = w $. ...

September 7, 2025 · 258 wierder

Complex Numbers and Vector Space

Léisung zu dësen Exercicer sinn am Archiv op luxformel ze fannen. Complex Numbers and Vector Space Exercise 1 : Complex Number Inverse Suppose $a $ and $b $ are real numbers, not both 0. Find real numbers $c $ and $d $ such that $$ \frac{1}{a + bi} = c + di. $$Exercise 2 : Cube Root of Unity Show that $$ \frac{-1 + \sqrt{3}i}{2} $$ is a cube root of 1 (meaning that its cube equals 1). ...

September 7, 2025 · 420 wierder